2.0/1背包
一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只有一件求旅行者能获得最大总价值。
<1>分析说明:
显然这个题可用深度优先方法对每件物品进行枚举(选或不选用0,1控制).
程序简单,但是当n的值很大的时候不能满足时间要求,时间复杂度为O(2n)。按递归的思想我们可以把问题分解为子问题,使用递归函数
设 f(i,x)表示前i件物品,总重量不超过x的最优价值
则 f(i,x)=max(f(i-1,x-W)+C,f(i-1,x))
f(n,m)即为最优解,边界条件为f(0,x)=0 ,f(i,0)=0;
动态规划方法(顺推法)程序如下:
程序如下:
program knapsack02;
const maxm=200;maxn=30;
type ar=array[1..maxn] of integer;
var m,n,j,i:integer;
c,w:ar;
f:array[0..maxn,0..maxm] of integer;
function max(x,y:integer):integer;
begin
if x>y then max:=x else max:=y;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w,c);
for i:=1 to m do f(0,i):=0;
for i:=1 to n do f(i,0):=0;
for i:=1 to n do
for j:=1 to m do
begin
if j>=w then f[i,j]:=max(f[i-1,j-w]+c,f[i-1,j])
else f[i,j]:=f[i-1,j];
end;
writeln(f[n,m]);
end.
使用二维数组存储各子问题时方便,但当maxm较大时如maxn=2000时不能定义二维数组f,怎么办,其实可以用一维数组,但是上述中j:=1 to m 要改为j:=m downto 1,为什么?请大家自己解决。
3.完全背包问题
一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,
每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.
求旅行者能获得的最大总价值。
本问题的数学模型如下:
设 f(x)表示重量不超过x公斤的最大价值,
则 f(x)=max{f(x-w)+c} 当x>=w 1<=i<=n
程序如下:(顺推法)
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
f:array[0..maxm] of integer;
begin
readln(m,n);
for i:= 1 to n do
readln(w,c);
f(0):=0;
for i:=1 to m do
for j:=1 to n do
begin
if i>=w[j] then t:=f[i-w[j]]+c[j];
if t>f then f:=t
end;
writeln(f[m]);
end.