首页| 论坛| 消息
主题:NOIP全集(NOIP95-05试题、答案、解题报告、测试数据)
回帖:上述算法将较大的元素看作较重的气泡,每次最大的元素沉到表尾。其中First(L)和Last(L)分别表示线性表L的第一个元素和最后一个元素的位置,swap(x,y)交换变量x,y的值。上述算法简单地将线性表的位置当作整数用for循环来处理,但实际上线性表可能用链表实现;而且上述算法将线性表元素的值当作其键值进行处理。不过这些并不影响表达该算法的基本思想。今后如果不加说明,所有的算法都用这种简化方式表达。
容易看出该算法总共进行了n(n-1)/2次比较。如果swap过程消耗的时间不多的话,主要时间消耗在比较上,因而时间复杂性为O(n2)。但是如果元素类型是一个很大的纪录,则Swap过程要消耗大量的时间,因此有必要分析swap执行的次数。
显然算法Bubble_Sort在最坏情况下调用n(n-1)/2次Swap过程。我们假设输入序列的分布是等可能的。考虑互逆的两个输入序列L1=k1,k2,..,kn和L2=kn,kn-1,..,k1。我们知道,如果ki>kj,且ki在表中排在kj前面,则在冒泡法排序时必定要将kj换到ki前面,即kj向前浮的过程中一定要穿过一次ki,这个过程要调用一次Swap。对于任意的两个元素ki和kj,不妨设ki>kj,或者在L1中ki排在kj前面,或者L2在中ki排在kj前面,两者必居其一。因此对于任意的两个元素ki和kj,在对L1和L2排序时,总共需要将这两个元素对调一次。n个元素中任取两个元素有Cn2 种取法,因此对于两个互逆序列进行排序,总共要调用Cn2 =n(n-1)/2次Swap,平均每个序列要调用n(n-1)/4次Swap。那么算法Bubble_Sort调用Swap的平均次数为n(n-1)/4。
可以对冒泡算法作一些改进,如果算法第二行的某次内循环没有进行元素交换,则说明排序工作已经完成,可以退出外循环。可以用一个布尔变量来记录内循环是否进行了记录交换,如果没
下一页 (1/3)
下一楼›:谢谢lz了
‹上一楼:在下面的插入排序算法中,为了写程序方便我们可以引入一个哨兵 ..

--> 查看全部回帖(87)
«返回主帖